

Aquifer Sustainability at the Osceola County Rural Water System H-Series Wellfield

Water Resources Investigation Report 17

Aquifer Sustainability at the Osceola County Rural Water System H-Series Wellfield

Prepared by Jason A. Vogelgesang Nathan L. Holt and J. Michael Gannon

Iowa Geological Survey Water Resources Investigation Report 17

TABLE OF CONTENTS

TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
EXECUTIVE SUMMARY
INTRODUCTION
Site Background Information
Field Activities and Data Collection
GEOLOGY
Geophysical Survey
HYDROGEOLOGY
Aquifer Test Results
Sediment Sampling14
GROUNDWATER MODELING
Calibration Results
Drought Duration Model Simulation17
WATER QUALITY EVALUATION
CONCLUSIONS
Recommendations
REFERENCES
Appendix A – Drilling Records for New Observation Wells
Appendix B - Monthly Water Level Measurements in On-Site Observation Wells
Appendix C – Chloride Sampling Results
Appendix D – Aquifer Pump Tests
Appendix E – Electrical Resistivity Geophysical Survey Results

LIST OF TABLES

Tables	<u>page</u>
Table 1. Aquifer pump test results at the OCRWS H-Series east wellfield.	13
Table 2. Laboratory permeability results for Ocheyedan River sediment samples	15
Table 3. Percentage of nitrate reduction as water flows from the Ocheyedan River into the shallow	
groundwater adjacent to the river (OB-3).	21

LIST OF FIGURES

Figures

Figure 2. The fraction of fowa during the fast 17 years that experienced an extreme (D3-D4) of
exceptional drought (D4) (NDMC)
Figure 3. OCRWS H-Series wellfield showing the location of existing observation wells H1 OB Well
and H2 OB Well, four new observation wells OB-1, OB-2, OB-3, and OB-4, six new river piezometers
PZ-A, PZ-B, PZ-C, PZ-D, PZ-E, and PZ-3, and surface water sample location SW29
Figure 4. Geophysical survey locations from this investigation (Lines 1-4) and Gannon and Vogelgesang
(2015) (Lines 5-15)
Figure 5. Electrical resistivity models for A) Line 1-west to east B) Line 2-north to south C) Line 3-west
to east D) Line 4-north to south. Dashed lines indicate approximate aquifer boundaries
Figure 6. River sediment sampling locations near the OCRWS H-Series wellfield
Figure 7. Correlation of simulated versus observed water levels for the November 2015 calibration
period
Figure 8. Simulated groundwater upwelling (rise in water table) from the proposed temporary low-head
dam under drought conditions
Figure 9. Monthly nitrate as nitrogen concentrations measured in the surface water and piezometer
sample locations for November 2015 through November 2016
Figure 10. Monthly nitrate as nitrogen concentrations measured in the observation well sample locations
for November 2015 through November 2016
Figure 11. Monthly nitrate as nitrogen concentrations measured in the OCRWS production wells for
November 2015 through November 2016
Figure 12. Monthly nitrate as nitrogen concentrations measured in the Ocheyedan River and in the
shallow groundwater adjacent to the river (OB-3)

page

EXECUTIVE SUMMARY

The Iowa Geological Survey completed a hydrogeologic investigation of an alluvial aquifer near the Osceola County Rural Water System (OCRWS) H-Series wellfield which is located in Osceola County, Iowa. The initial purpose of the investigation was to evaluate drought resiliency benefits of a temporary low-head dam. Results from the evaluation of the temporary low-head dam would then be used to determine if a permanent structure should be created at the site. However, although still planned for construction, the dam has not been installed due to consistently high flows on the Ocheyedan River during the study period. Results from this investigation provide a background dataset which can be used as a baseline after the dam is implemented. Additionally, a groundwater model was refined and is ready to accept data following implementation of the dam.

Based on data from the on-site production wells and observation wells, the thickness of alluvial deposits beneath the OCRWS H-Series wellfield varies from 25 to 49 feet, and averages approximately 40 feet. The deposits are not uniform or homogeneous and include clay, silt, sand, gravel, cobbles, and boulders. The alluvial aquifer consists of glacial outwash deposits associated with Des Moines Lobe glacial advances. A geophysical investigation was conducted to help evaluate changes in lithology within the wellfield, assist in the assessment of aquifer thickness, gather additional information about aquifer properties, aid in the identification of locations for observation wells, and help with development of the local-scale groundwater flow model.

Groundwater flow in the vicinity of the OCRWS H-Series wellfield is strongly influenced by the Ocheyedan River stage. Groundwater elevations and flow directions fluctuated depending on whether the production wells were actively pumping or idle. Pump tests were conducted in OCRWS production wells H-3 and H-4. Observation wells OB-1 and OB-3 were used to measure drawdowns. Transmissivity values ranged from 59,200 ft²/day near OB-3 to 146,000 ft²/day near OB-1. Hydraulic conductivity values were found to range from 1,480 to 1,980 feet/day, with an arithmetic mean of 1,730 feet/day. Storativity values, or specific yield, ranged from 0.0117 near OB-3 to 0.0000001 near OB-1. In addition to the aquifer parameter estimation, the observed drawdown data were also used to help calibrate the groundwater flow model.

The calibrated groundwater flow model was used to simulate the benefits of the proposed, temporary lowhead dam. In this severe drought scenario, the temporary dam provides a benefit to all H-Series production wells. The greatest upwelling was shown near well H-4 with a simulated increase of approximately 1.5 feet. Upwelling near wells H-1, H-2, and H-3 was shown to be between half and one foot.

Monthly observations show nitrate concentrations in the Ocheyedan River fluctuated between 2.8 and 24 mg/L during the sampling period. Sampling results also show that nitrate concentrations are low in the piezometers, observation wells, and production wells relative to the river. Significant nitrate reduction from the river sediments was observed consistently throughout the study.

If a decision is made to move forward with a permanent drought resiliency strategy following the monitoring of the temporary low-head dam, consideration should be given to all available strategy

options. For example, a rock riffle structure(s) or an excavated/reconnected cutoff channel system could provide similar benefits to water quantity and quality as a low-head dam. The permanent strategy should assess environmental (biologic, ecosystem) impacts as well as water quantity and quality benefits.

INTRODUCTION

The Iowa Geological Survey completed a hydrogeologic investigation of the alluvial aquifer near the OCRWS H-Series wellfield which is located in Osceola County, Iowa (Figure 1). The initial purpose of the investigation was to evaluate drought resiliency benefits of a temporary low-head dam. Results from the evaluation of the temporary low-head dam would then be used to determine if a permanent structure should be created at the site. However, although still planned for construction, the dam has not been installed due to consistently high flows on the Ocheyedan River during the study period. Results from this investigation provide a background dataset which can be used as a baseline after the dam is implemented. Additionally, a groundwater model was refined and is ready to accept data following implementation of the dam.

The objective of installing a low-head dam near a high capacity wellfield is to increase the surface water storage within the aquifer. During moderate to severe droughts, little, if any precipitation recharge enters an alluvial aquifer. To maintain well capacity and water production, alluvial aquifers must rely on nearby streams, rivers, and other surface water as sources of recharge. Low-head dams provide additional groundwater storage during periods of normal or above normal precipitation by raising the stage of the river. This additional storage is then available to maintain water production during dry periods and droughts.

Figure 1. OCRWS H-Series wellfield location and model area.

Monthly water level measurements and water quality samples were collected at the site for approximately one year. In addition, a three-dimensional groundwater flow model was developed to evaluate the groundwater quantity benefits, and to see what, if any, impacts the temporary low-head dam may have on groundwater quality. Previous investigations have been conducted by Leggette Bradshears & Graham, Inc. (LBG) (Oswald and Hume 2007), and the Iowa Geological Survey in 2014 and 2015 (Gannon and Vogelgesang 2014, Gannon and Vogelgesang 2015).

Site Background Information

Figure 2. The fraction of Iowa during the last 17 years that experienced an extreme (D3-D4) or exceptional drought (D4) (NDMC).

Iowa experienced a significant statewide drought beginning in the fall of 2011 with dry conditions continuing throughout most of 2012 and 2013. Figure 2 shows the fraction of Iowa during the last 17 years that experienced an extreme (D3-D4) or exceptional drought (D4), as defined by the National Drought Mitigation Center (NDMC). Discharge in many rivers reached historic lows during the widespread drought. The lowest average daily discharge in the Ocheyedan River at Spencer (USGS) was recorded in 2013 at 2.9 cubic feet per second.

Unlike previous droughts, the security risk associated with the 2012-13 drought increased significantly due to sociological and economic changes in water distribution and use. The rapid expansion of rural water systems and the concentration of livestock in animal feeding operations (AFOs) combined to place additional strain on the limited water resources. Unlike the past, when most farms and small rural communities relied on their own wells, regional rural water systems now supply most of the water to individual farms, livestock producers, AFOs, and rural communities. Although Osceola County has a low population, estimated at 6,064 residents (USCB), approximately 335,000 hogs and pigs, and 45,000 cattle and calves were marketed in 2012 (USDA). The increase in water consumption by both urban and rural users in 2012 and 2013 put an enormous strain on water utilities, especially rural water districts.

Field Activities and Data Collection

On November 2, 2015, four observation wells (OB-1, OB-2, OB-3, and OB-4) were installed as shown on Figure 3. The wells consisted of 2-inch diameter polyvinyl chloride (PVC) with the lower ten feet screened using 0.010 slot screen. Drilling logs and well construction diagrams are shown in Appendix A. A steel protective casing was also used for each well to complete the installation. The top of the PVC casing elevation for each new observation well and one piezometer (PZ-3-installed near SW2) were surveyed using a David White transit and survey rod. The top of production well H-3 was used as the datum elevation. Existing observation wells (H1 OB Well, H2 OB Well) were also used for this investigation. Five new river piezometers (PZ-A, PZ-B, PZ-C, PZ-D, and PZ-E) were installed in preparation of the low-head dam installation monitoring.

Monthly water levels were measured starting in November of 2015 using an In-Situ electronic water level meter. The monthly water levels and groundwater elevations are shown in Appendix B. Water samples were also collected monthly from each observation well and piezometer location using a peristaltic pump. In addition, water samples were collected in the Ocheyedan River (SW2) and in OCRWS production wells H-1, H-2, H-3, and H-4 (Figure 3). Samples were analyzed for nitrate as nitrogen and chloride. All

of the sampling locations are shown in Figure 3.

In addition to the collection of water quality samples, a calibrated local-scale groundwater model was developed to prepare for evaluation of the groundwater quantity benefits, and to see what, if any, impacts the temporary low-head dam may have on groundwater quality. The groundwater flow model referenced a regional model developed by the Iowa Geological Survey in 2015 (Gannon and Vogelgesang 2015).

GEOLOGY

Based on data from the on-site production wells and observation wells (Appendix A), the thickness of alluvial deposits beneath the OCRWS H-Series wellfield varies from 25 to 49 feet, and averages approximately 40 feet. The deposits are not uniform or homogeneous and include clay, silt, sand, gravel, cobbles, and boulders. The alluvial aquifer consists of glacial outwash deposits associated with Des Moines Lobe glacial advances. The upper 2 to 6 feet of the aquifer consists of fine grained sand or silty sand topsoil. Beneath the topsoil is fine to very coarse sand and gravel. The base of the aquifer is underlain by either glacial till or clay-rich alluvium.

Geophysical Survey

A geophysical investigation was conducted to help evaluate changes in lithology within the wellfield, assist in the assessment of aquifer thickness, gather additional information about aquifer properties, aid in the identification of locations for observation wells, and help with development of the local-scale groundwater flow model. Geophysical measurements were collected using an Advanced Geosciences Inc. (AGI) SuperSting R8, 8-channel electrical resistivity (ER) meter.

Four resistivity lines were completed as part of this study and combined with eleven lines completed as part of a prior investigation (Gannon and Vogelgesang 2015) for a total of fifteen lines (Figure 4). Lines 1 and 2 were gathered parallel and perpendicular to the Ocheyedan River on the northeast portion of the wellfield. Lines 3 and 4 were gathered parallel and perpendicular to the Ocheyedan River on the southeast portion of the wellfield. Existing Lines 5 through 15 were gathered on the western portion of the wellfield and were completed before implementation of production wells H-3 and H-4.

Field measurements were obtained by introducing a direct current into the ground through current electrodes and measuring resulting voltages through potential electrodes. An array of up to 56 electrodes were spaced approximately 20 feet apart, driven approximately one foot into the ground, and connected via electrode cables and a switch box to a central ER meter. A dipole-dipole collection configuration was utilized to better image geologic variability associated with alluvial aquifers. Measure time was set at 3.6 seconds and measurements were stacked (averaged) twice, unless the standard deviation of all channels was less than 2%. In that case, a third measurement was taken and included in the average. To quantify error, overlapping data were collected in areas already covered by normal measurement. Data were processed using AGI EarthImager 2D version 2.4.0 software. A smooth model inversion method was used. The inversion mesh was fine for the near-surface region in each transect and coarsened with depth. Resistivity values below 1 Ohm-m or above 10,000 Ohm-m were removed as these values are typically

representative of erroneous data. Inversion was stopped once root-mean-squared (RMS) values were below 6% and L2 norm ratio values were less than 1. Each model was corrected for land surface elevation using LiDAR elevation data.

Final geophysical models for each line are shown in Figure 5 and included in Appendix E. Models provide information on how the subsurface responds to electrical influence. Model results can be indicative of a number of variables including, mineralogy, water saturation, compaction and available pore space, dissolved ions in pore fluid, as well as other geologic, biologic, and chemical factors. Generally, coarse grained material is more resistive to electrical charge than fine grained material. However, interpretation of these data must be in the context of additional site information. Drilling logs from production wells and observation wells were analyzed and used in the interpretation of the geophysical data. The reds and yellows in the models correlate to sand and gravel units identified in neighboring boreholes. Dashed lines in Figure 5 indicate approximate aquifer boundaries and associated groundwater model layer distinctions. Aquifer thicknesses interpreted from the geophysical models show greater variability in some areas. For example, models from Lines 1 and 2 show decreased resistivity values and considerable spatial variability, possibly suggesting this area may have more complex

lithology related to alluvial and/or glacial deposits. Understanding aquifer heterogeneity is especially important in alluvial aquifer settings where coarse grained material usually facilities increases in groundwater flow.

HYDROGEOLOGY

Groundwater flow in the vicinity of the OCRWS H-Series wellfield is strongly influenced by the Ocheyedan River stage. Monthly water level data from the observation wells and piezometer can be found in Appendix B. Groundwater elevations and flow directions fluctuated depending on whether the production wells were actively pumping or idle. Our measured evaluations did not factor in the active versus inactive pumping cycles.

Groundwater recharge sources are precipitation, induced recharge from surface water, and seepage from glacial drift and terraces along the valley wall. It is difficult to measure groundwater recharge based on annual precipitation data. Much of the precipitation recharge in Iowa occurs during the spring and fall. The actual amount of groundwater recharge depends on the intensity and distribution of the precipitation events, and when they occur seasonally. The annual rate of precipitation recharge during a moderate to severe drought was calibrated to be approximately 3 inches/year (Gannon, 2012).

Aquifer Test Results

Hydraulic properties are used to define and characterize aquifers and include specific yield or storage, transmissivity, and hydraulic conductivity. The most reliable aquifer properties are those obtained from controlled aquifer pump tests with known pumping rates, pumping duration, accurate well locations, and accurate water level measurements. Pump tests were conducted in OCRWS production wells H-3 and H-4. Observation wells OB-1 and OB-3 were used to measure drawdowns. Table 1 shows the pump test results, which indicate transmissivity values range from 59,200 ft²/day near OB-3 to 146,000 ft²/day near OB-1. Storativity values or specific yield range from 0.0117 near OB-3 to 0.0000001 near OB-1. In addition to the aquifer parameter estimation, the observed drawdown data were also used to help calibrate the groundwater flow model. This will be discussed later in the report. The pump test graphs and raw data are given in Appendix D.

		Radial Distance to Pumping Well	Calculated Transmissivity	Calculated Hydraulic Conductivity	Calculated	Observed Drawdown
Pumping Well	Observation Well	(ft)	(ft²/day)	(ft/day)	Storativity	(ft)
Н-3	OB-1	200	146,000	1,980	0.0000001	0.737
H-4	OB-3	200	59,200	1,480	0.0117	0.597

Table 1. Aquifer pump test results at the OCRWS H-Series east wellfield.

Hydraulic conductivity can be calculated by dividing transmissivity by the overall aquifer thickness. Hydraulic conductivity values were found to range from 1,480 to 1,980 feet/day, with an arithmetic mean of 1,730 feet/day. In addition to pump test data collected for this study, pump tests completed for a previous study near production wells H-1 and H-2 were used to analyze aquifer parameters in the western portion of the H-Series wellfield (Gannon and Vogelgesang 2015).

Figure 6. River sediment sampling locations near the OCRWS H-Series wellfield.

Sediment Sampling

Sediment samples were collected from the Ocheyedan River riverbed in locations marked in Figure 6. Constant-head permeability tests were completed for each of the samples to calculate vertical hydraulic conductivity and estimate the spatial variability within the wellfield. The laboratory method used to calculate permeability was taken from the American Society of Testing Materials (ASTM 1967). Results from constant-head permeability tests are shown in Table 2. Relevant results were also extracted from Gannon and Vogelgesang (2015) and are included in the results. Hydraulic conductivity values calculated from the samples range from 0.01315 to 9,725 feet/day.

Sample ID	H-H1	Q (mL/minute)	Length (cm)	Area (cm²)	K (ft/day)
HW*	66.0	650	15.24	45.58	155.6
HCN*	65.0	690	15.24	45.58	167.7
HCC*	62.0	750	15.24	45.58	191.1
HCS*	103.5	250	15.24	45.58	38.16
HE*	85.5	475	15.24	45.58	87.76
PZ-1*	51.5	0.0429	15.24	45.58	0.01315
PZ-2*	76.0	160	15.24	45.58	33.26
PZ-3*	27.0	820	15.24	45.58	479.7
PZ-B	26.5	700	8	45.34	220.2
PZ-C	1.2	1400	8	45.34	9725
PZ-D	23.5	1120	8	45.34	397.3
*Gannon and	l Vogel <u>a</u>	esang 2015			

Table 2. Laboratory permeability results for Ocheyedan River sediment samples.

GROUNDWATER MODELING

The modeling software Visual MODFLOW Classic Version v.4.6.0.168 (June 2016) was used to simulate the groundwater flow in the alluvial aquifer under severe drought conditions. An original model developed in 2015 (Gannon and Vogelgesang 2015) was referenced in the creation of this OCRWS H-Series wellfield focused model. New on-site test borings and pump test data were utilized as model inputs. A three-layered model was used for the simulation. Borehole logs were obtained from on-site test borings and elevation data were obtained from LiDAR datasets. The model boundary conditions and inputs included the following:

- Layer 1 represented the developed soil zone. The horizontal hydraulic conductivity was assigned a value of 100 feet/day. The vertical hydraulic conductivity value was assigned a value 1/10 the horizontal hydraulic conductivity.
- Layer 2 represented the sand and gravel aquifer. The horizontal hydraulic conductivity was calibrated within the model and ranged from 25 to 1,700 ft. per day. The vertical hydraulic conductivity value was assigned a value 1/10 the horizontal hydraulic conductivity.
- Layer 3 represented a confining silty clay (alluvial clay or glacial till). The horizontal hydraulic conductivity was assigned a value of 0.01 feet/day. The vertical hydraulic conductivity value was assigned a value 1/10 the horizontal hydraulic conductivity.
- The uplands were considered no-flow boundaries. This was represented by de-activating the grids outside the alluvial aquifer boundary. The alluvial aquifer boundary was estimated using geologic maps created by the IGS (Quade, Giglierano et al. 2005), information from a previous study (Gannon and Vogelgesang 2015), and LiDAR elevation data.
- The Ocheyedan River and Dry Run Creek were represented as river boundaries. The surface water gradient was estimated using LiDAR data. Constant-head permeability laboratory tests provided vertical conductivity data for the Ocheyedan River. The model represented baseflow (summer-time) conditions and the stage was kept the same throughout the entire time period for

each simulation.

- General-head boundaries were used for the two sand and gravel pits in the northwest portion of the study area. The general head values were obtained from LiDAR elevation data, then corrected to correlate to river stages for the drought simulation.
- OCRWS production wells were included in the model simulation. Usage was assumed to be constant during the simulation.
- Specific yield values of 0.1 and specific storage values of 0.001 were used in all model layers and assumed to be representative of the aquifer as average values.
- Average annual recharge was set to represent drought conditions (3 inches per year) from Gannon (2016).
- The model domain consisted of 226 rows by 227 columns. The grid size varied from 27 feet to 91 feet.

Calibration Results

The OCRWS H-Series wellfield model was calibrated based on water levels obtained in November 2015. November 2015 was chosen to represent baseline aquifer conditions as increased precipitation following that month influenced river stages, static water levels in observation wells, and aquifer recharge values. Static water levels measured in observation wells OB-1, OB-2, OB-3, and OB-4 in November 2015 were compared to simulated levels. Simulated versus observed water levels for the observation wells after calibration are presented in Figure 7.

Figure 7. Correlation of simulated versus observed water levels for the November 2015 calibration period.

Calibrated hydraulic conductivity throughout the aquifer ranged from 25 to 1,700 feet/day. Based on model calibration, the area near observation well OB-3 had the highest hydraulic conductivity of 1,700 feet/day. Hydraulic conductivity values in this range are indicative of coarse sand, gravel, and cobbles. Hydraulic conductivity values near observation wells OB-1 and OB-2 were found to be being highly variable. Results from the geophysical investigation suggest this area may have more complex lithology, related to alluvial and/or glacial deposits. Geophysical results near observation wells OB-3 and OB-4 suggest a simpler lithologic package with consistent aquifer thicknesses.

Drought Duration Model Simulation

The calibrated groundwater flow model was used to simulate the benefits of the proposed temporary lowhead dam. In this scenario, the dam was placed immediately west of Verdin Avenue and was designed to raise the river stage by three feet from drought stage (1429.4' ASL). A constant elevation of "backed-up" water behind the dam was assumed until the gradient of the Ocheyedan River was greater than the ponded water. The simulation represented a severe two-year drought similar to the 2012 to 2013 drought. The model assumed one foot of water remained in the Ocheyedan River (Gannon and Vogelgesang 2015) and three inches remained in Dry Run Creek. Sand and gravel pits to the northwest of the wellfield were designated as general head boundaries. Water levels in the pits were lowered by the same amount as the Ocheyedan River.

Figure 8 shows simulated groundwater upwelling from the model, which represents increases in the water table elevations during a two-year severe drought following installation of the temporary low-head dam. In this scenario, the temporary dam provides a benefit to all H-Series production wells. The greatest upwelling is near production well H-4, which showed a simulated increase of approximately 1.5 feet. Upwelling near production wells H-1, H-2, and H-3 was shown to be between half and one foot. Groundwater levels should be monitored following implementation of the temporary low-head dam to confirm model results.

Figure 8. Simulated groundwater upwelling (rise in water table) from the proposed temporary low-head dam under drought conditions.

WATER QUALITY EVALUATION

Water samples were collected monthly from the observation wells (OB-1, OB-2, OB-3, OB-4, H1 OB Well, and H2 OB Well), the production wells (H-1, H-2, H-3, and H-4), one piezometer (PZ-3), and the Ocheyedan River downstream of the wellfield (Figure 3). Water samples were also taken at locations identified as PZ-1 and PZ-2 (Figure 6). However, high flows on the Ocheyedan River eventually displaced those piezometers. Samples were analyzed for nitrate as nitrogen and chloride. Figures 9, 10, and 11 show the nitrate as nitrogen concentrations throughout the 12 month period for the surface water and piezometers, the observation wells, and the production well samples.

Figure 9. Monthly nitrate as nitrogen concentrations measured in the surface water and piezometer sample locations for November 2015 through November 2016.

Figure 10. Monthly nitrate as nitrogen concentrations measured in the observation well sample locations for November 2015 through November 2016.

Monthly observations show nitrate concentrations in the Ocheyedan River fluctuated between 2.8 and 24 mg/L during the sampling period (Figure 9). Sampling observations also show that nitrate concentrations are low in the piezometers, relative to the river. Early samples (November 2015 through May 2016) may be unreliable due to the high flows on the Ocheyedan River causing breakthrough of surface water along well casing and the eventual displacement of piezometers PZ-1 and PZ-2. However, data from PZ-3, which did not get displaced, show major nitrate reductions within the hyporheic zone, a region immediately below the river bottom that facilitates groundwater and surface water interaction. Fine-grained sediments and organic material may be reducing nitrate concentration in this zone. Reduction in the hyporheic zone is likely one of two major mechanisms of reducing nitrate in the aquifer. Precipitation that infiltrates into the aquifer from the prairie surrounding the wellfield is likely a source of low-nitrate groundwater recharge. The prairie does not require nitrate applications and likely filters nitrate runoff from neighboring row-crop fields.

The monthly nitrate as nitrogen concentrations in the Ocheyedan River and observation well OB-3 is shown in Figure 12. Nitrate concentrations observed at OB-3, which is located between the Ocheyedan River and production well H-4 (Figure 3), were under detection limits (<1 or <0.05 mg/L) except for in January 2016 (0.09 mg/L). The percentage of nitrate reduction per month from the Ocheyedan River to OB-3 is shown in Table 3. The nitrate reductions observed at OB-3 likely represent a combination of groundwater induced from the Ocheyedan River (reduction by sediments) and dilution due to precipitation recharge (reduction by prairie grass). While significant nitrate reductions were observed consistently at the site, detailed mechanisms for the reductions were not analyzed as part of this study. Future work analyzing reduction mechanisms (sediment packages, biologic digestion, etc.) may be beneficial to fully understanding the changes in surface water to groundwater nitrate concentrations.

Table 3. Percentage of nitrate reduction as water flows from the Ocheyedan River into the shallow groundwater adjacent to the river (OB-3).

Sampling Date	Nov. 2015	Dec. 2015	Jan. 2016	Feb. 2016	Mar. 2016	Apr. 2016	May 2016	Jul. 2016	Aug. 2016	Sep. 2016	Oct. 2016	Nov. 2016
Nitrate as N in River (ppm)	12.2	11	10	16.4	12	24.3	15.2	7.99	2.83	9.72	10.7	9.89
Nitrate as N in OB3 (ppm)	<1	<1	0.09	<1	<1	<1	<1	<1	<1	<1	<1	<1
Percent Reduction	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Figures 10 and 11 show that the nitrate as nitrogen concentrations in the observation wells and the OCRWS production wells remained consistently low during the sampling period. Nitrate concentrations in the observation wells were below detection limits (<1 or <0.05 mg/L) except for the January 2016 sampling interval, where they ranged from below detection to 0.15 mg/L. While nitrate values were detected in three of the observation wells during January 2016, the concentrations were still very low. Nitrate concentrations for the OCRWS production wells were all below detection limits (<1 or <0.05 mg/L) during the sampling period.

Chloride sampling results are shown in Appendix C. Due to nitrate concentrations being low or below detection limits, chloride concentrations were not useful in our water quality analysis.

CONCLUSIONS

The Iowa Geological Survey completed a hydrogeologic investigation of the alluvial aquifer near the OCRWS H-Series wellfield which is located in Osceola County, Iowa. The initial purpose of the investigation was to evaluate drought resiliency benefits of a temporary low-head dam. Results from the evaluation of the temporary low-head dam would then be used to determine if a permanent structure should be created at the site. However, although still planned for construction, the dam has not been installed due to consistently high flows on the Ocheyedan River during the study period. Results from this investigation provide a background dataset which can be used as a baseline after the dam is implemented.

Major nitrate reductions were observed within the hyporheic zone, a region immediately below the river bottom that facilitates groundwater and surface water interaction. Fine-grained sediments and organic material may be reducing nitrate concentration in this zone. Reduction in the hyporheic zone is likely one of two major mechanisms of reducing nitrate in the aquifer. Precipitation that infiltrates into the aquifer from the prairie surrounding the wellfield is likely an additional source of low-nitrate groundwater recharge.

Additionally, a groundwater model was refined and is ready to accept data following implementation of the dam. The groundwater model was used to simulate potential increases in water table elevations during a severe drought following implementation of a temporary low-head dam.

Recommendations

A similar study is recommended after installation of the temporary low-head dam to quantify its benefits to groundwater quantity and quality. Results from this investigation provide a background dataset which can be used as a baseline after the dam is implemented. The groundwater model for the OCRWS H-

Series wellfield was refined and is ready to accept data following implementation of the dam.

While significant nitrate reductions were observed consistently at the site, specific mechanisms for the reductions were not analyzed as part of this study. Future work analyzing detailed reduction mechanisms (sediment packages, biologic digestion, etc.) may be beneficial to fully understand the changes in surface water to groundwater nitrate concentrations. If a decision is made to move forward with a permanent drought resiliency strategy following the monitoring of the temporary low-head dam, consideration should be given to all available strategy options. For example, a rock riffle structure(s) or an excavated/reconnected cutoff channel system could provide similar benefits to water quantity and quality as a low-head dam. The permanent strategy should assess environmental (biologic, ecosystem) impacts as well as water quantity and quality benefits.

REFERENCES

ASTM (1967). <u>Permeabillity and Capillarity of Soils</u>. Philadelphia, American Society of Testing Materials.

Gannon, J. M. (2012). Aquifer Characterization and Drought Assessment, Floyd River Alluvial Aquifer, Iowa Geological Survey. Water Resources Investigation Report No. 6.

Gannon, J. M. and J. A. Vogelgesang (2014). Aquifer Characterization and Drought Assessment, Ocheyedan River Alluvial Aquifer., Iowa Geological Survey – IIHR Hydroscience and Engineering. Water Resources Investigation Report No. 10.

Gannon, J. M. and J. A. Vogelgesang (2015). Aquifer Characterization and Drought Assessment, Osceola Rural Water District., Iowa Geological Survey – IIHR Hydroscience and Engineering. **Water Resources Investigation Report No. 11.**

NDMC. "U.S. Drought Monitor, Iowa." Retrieved April 04, 2017, from <u>http://droughtmonitor.unl.edu/Home/StateDroughtMonitor.aspx?IA</u>.

Oswald, J. and D. S. Hume (2007). Numerical Ground-Water Flow Model, Ocheyedan River Valley Alluvial Aquifer, Osceola County, Iowa, Leggette, Brashears & Graham, Inc.: 12.

Quade, D. J., et al. (2005). Surficial Geologic Materials of Osceola County, Iowa, Iowa Geological Survey. **Open File Map 05-03**.

USCB. "QuickFacts." Retrieved April 03, 2017, from https://www.census.gov/quickfacts/table/PST045216/19143,00.

USDA. "2012 Census of Agriculture." Retrieved April 04, 2017, from https://www.agcensus.usda.gov/Publications/2012/Online_Resources/County_Profiles/Iowa/cp19143.pdf.

USGS. Retrieved April 04, 2017, from https://waterdata.usgs.gov/ia/nwis/uv?site_no=06605000.

MONITORING WELL / PIEZOMETER C	ONSTRUCTION DOCUMENTATION FORM						
Disposal Site Name OCRWD	Permit No.						
Well or Piezometer No. #							
Dates Started Nou. 2, 2015	Date Completed 2015. Nov-2						
A. SURVEYED LOCATIONS AND ELEVATIONS	B. SOIL BORING INFORMATION						
Locations (± 0.5 ft.):	Name & address of construction company						
Specify corner of site	Rewerts Well Co Inc.						
Distance & direction along boundary	742 W.18257						
Distance & direction from boundary to well	Neuada. IA Sozi						
Elevations (± 0.01 ft. MSL):	Name of driller Justin Rewerts						
Ground Surface	Drilling method HSA						
Top of protective casing	Drilling fluid						
Top of well casing	Bore Hole diameter 7'3						
Benchmark elevation	Soil sampling method None						
Benchmark description	Depth of boring 30						
C. MONITORING WELL INSTALLATION							
Casing material PUC	Placement method Pour in						
Length of casing 22.5	Volume 200165						
Outside casing diameter 2	Backfill (if different from seal):						
Inside casing diameter	Material						
Casing joint type Flush	Placement method						
Casing/screen joint type Flush Thread	Volume						
Screen material	Surface seal design:						
Screen opening size 1010	Material of protective casing:						
Screen length	Material of grout between protective casing and well casing:						
Depth of Well 30	Protective cap:						
Filter Pack: Unimen 4030	Material 4x4 Steel						
Material Silicia	Vented?: Y N Locking?: Y N						
Grain Size 4030	Well cap:						
Volume	Material						
Seal (minimum 3 ft, length above filter pack): Beintonite	Vented?: Y N						
Material							
D. GROUNDWATER MEASUREMENT (+ 0.01 foot b	elow top of inner well casing)						
Water level	Stabilization time						
Well development method							
Average depth of frostline							

Appendix A – Drilling Records for New Observation Wells

Attachments: Driller's log. Pipe schedules and grouting schedules. 8 $\!\frac{1}{2}$ inch x 11 inch map showing locations of all monitoring wells and piezometers.

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina koger@dnr.iowa.gov</u>

06/2011 cmz

DNR Form 542-1277

ELEVATIONS: 1 0.01 FT. MSL DEPTHS: 1 0.1 FT. FROM GROUND SERFACE

OCRWPOBWell #1

SPACE TO ATTACH ENTIRE SOIL BORING LOG (SHOW SCREENED INTERVAL AND FILTER PACK INTERVAL).

TOP OF PROTECTIVE CASING-ELEVATION . TOP OF WELL CASING -ELEVATION _ GROUND SURFACE . . ELEVATION_ TOP OF BACKFILL -BASE OF CONCRETE PLUG AND BENTONITE GROUT ELEVATION _ 14" DEPTH_ BASE OF PROTECTIVE CASING ELEVATION _ 30" DEPTH___ BASE OF BACKFILL TOP OF SEAL ELEVATION _____ TOP OF FILTER PACK-BASE OF SEAL ELEVATION_ DEPTH_ TOP OF SCREEN ELEVATION_ 0115 DEPTH_ 1311111 BOTTOM OF SCREEN ELEVATION 25' -BASE OF FILTER PACK ELEVATION 255

0- J' Topsoil 2- Lé Sandy Yellow Clay 7-25 med. Sand. 25-26 Clay

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questione? Cell or Emeil: Nine Koger Environmental Engineer Sr., 515-725-8309, <u>nine.koger@dnr.iowe.gov</u>

06/2011 cmz

DWR Form 542-1277

MONITORING WELL / PIEZOMETER C	ONSTRUCTION DOCUMENTATION FORM						
Disposal Site Name UCRWD	Permit No.						
Well or Piezometer No. +)							
Dates Started NOU. J. JOIS	Date Completed Nov. 2, 2015						
A. SURVEYED LOCATIONS AND ELEVATIONS	B. SOIL BORING INFORMATION						
Locations (± 0.5 ft.):	Name & address of construction company						
Specify corner of site	Rewerts Well Co						
Distance & direction along boundary	742 W.18 5t.						
Distance & direction from boundary to well	Neuade, IA						
Elevations (± 0.01 ft. MSL):	Name of driller Justin Rewerts						
Ground Surface	Drilling method HSA						
Top of protective casing	Drilling fluid						
Top of well casing	Bore Hole diameter う 'ム"						
Benchmark elevation	Soil sampling method —						
Benchmark description	Depth of boring 25'						
C. MONITORING WELL INSTALLATION							
Casing material Puc	Placement method Pour						
Length of casing いでな	Volume 200 ibs.						
Outside casing diameter \Im^{*}	Backfill (if different from seal):						
Inside casing diameter	Material						
Casing joint type Flush Thread	Placement method						
Casing/screen joint type	Volume						
Screen material Puc	Surface seal design:						
Screen opening size . 016	Material of protective casing:						
Screen length	Material of grout between protective casing and well casing:						
Depth of Well 25'	Protective cap: 4×4						
Filter Pack:	Material Steel						
Material Silica	Vented?: YXN Locking?: XYN						
Grain Size 4030	Well cap:						
Volume	Material						
Seal (minimum 3 ft. length above filter pack):	Vented?- UVUN						
Material Bentonite							
D GROUNDWATER MEASUREMENT (+ 0.01 foot k	pelow top of inner well casing)						
Water level	Stabilization time						
Well development method							
Average depth of frostline							

Attachments: Driller's log. Pipe schedules and grouting schedules. 8 ½ inch x 11 inch map showing locations of all monitoring wells and piezometers.

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9^m St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

06/2011 cmz

DNR Form 542-1277

ELEVATIONS: 1 0.01 FT. MSL DEPTHS: 1 0.1 FT. FROM GROUND SERFACE SPACE TO ATTACH ENTIRE SOIL BORING LOG (SHOW SCREENED INTERVAL AND FILTER PACK INTERVAL).

OCRWD OBWell #2

0-J' TopSoil J-7' Sandy Clay Yellow 7-25' med. Sand. 25-26' Clay

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

05/2011 cmz

DNR Form 542-1277

~

MONITORING WELL / PIEZOMETER O	CONSTRUCTION DOCUMENTATION FORM
Disposal Site Name OCRWD	Permit No.
Well or Piezometer No. #33	
Dates Started NOU. J. JOIS	Date Completed Nov. 2, 2015
A. SURVEYED LOCATIONS AND ELEVATIONS	B. SOIL BORING INFORMATION
Locations (± 0.5 ft.):	Name & address of construction company
Specify corner of site	Rewerts Well Co
Distance & direction along boundary	742 W.18#5t.
Distance & direction from boundary to well	Neuade, IA
Elevations (± 0.01 ft. MSL):	Name of driller Justin Rewerts
Ground Surface	Drilling method HSA
Top of protective casing	Drilling fluid
Top of well casing	Bore Hole diameter う'な"
Benchmark elevation	Soil sampling method
Benchmark description	Depth of boring 25°
C. MONITORING WELL INSTALLATION	
Casing material PUC	Placement method Put
Length of casing いてい」	Volume 200 165.
Outside casing diameter \mathfrak{a}^*	Backfill (if different from seal):
Inside casing diameter	Material
Casing joint type Flush Thread	Placement method
Casing/screen joint type	Volume
Screen material	Surface seal design:
Screen opening size , 010	Material of protective casing:
Screen length	Material of grout between protective casing and well casing:
Depth of Well 25	Protective cap: 4×4
Filter Pack:	Material Steel
Material Silica	Vented?: Y X N Locking?: Y N
Grain Size 4030	Well cap:
Volume	Material
Seal (minimum 3 ft. length above filter pack):	
Material Bentonite	
D GROUNDWATER MEASUREMENT (+ 0.01 foot	below top of inner well casing)
Water level	Stabilization time
Well development method	
Average depth of frostline	

Attachments: Driller's log. Pipe schedules and grouting schedules. 8 $\frac{1}{2}$ inch x 11 inch map showing locations of all monitoring wells and piezometers.

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

06/2011 cmz

DNR Form 542-1277

ELEVATIONS: 1 0.01 FT. MSL DEPTHS: 1 0.1 FT. FROM GROUND SERFACE SPACE TO ATTACH ENTIRE SOIL BORING LOG (SHOW SCREENED INTERVAL AND FILTER PACK INTERVAL).

#1 OCRWD OBWell #3

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

06/2011 cmz

DNR Form 542-1277

MONITORING WELL / PIEZOMETER C	CONSTRUCTION DOCUMENTATION FORM						
Disposal Site Name OCRWD	Permit No.						
Well or Piezometer No. # 2 4							
Dates Started NOU. J. JOIS	Date Completed Nov. 2, 2015						
A. SURVEYED LOCATIONS AND ELEVATIONS	B. SOIL BORING INFORMATION						
Locations (± 0.5 ft.):	Name & address of construction company						
Specify corner of site	Rewerts Well Co						
Distance & direction along boundary	.742 W.18=37.						
Distance & direction from boundary to well	Neuade. IA						
Elevations (± 0.01 ft. MSL):	Name of driller Justin Rewerts						
Ground Surface	Drilling method HSA						
Top of protective casing	Drilling fluid						
Top of well casing	Bore Hole diameter う 'ひ"						
Benchmark elevation	Soil sampling method -						
Benchmark description	Depth of boring 25 '						
C. MONITORING WELL INSTALLATION							
Casing material PUC	Placement method Put						
Length of casing いしん	Volume 200 ibs.						
Outside casing diameter \mathfrak{Z}^*	Backfill (if different from seal):						
Inside casing diameter	Material						
Casing joint type Flush Thread	Placement method						
Casing/screen joint type	Volume						
Screen material	Surface seal design:						
Screen opening size , 010	Material of protective casing:						
Screen length	Material of grout between protective casing and well casing:						
Depth of Well る5 ⁴	Protective cap: 4×4						
Filter Pack:	Material Steel						
Material Silica	Vented?: Y N Locking?: Y N						
Grain Size 4030	Well cap:						
Volume	Material						
Seal (minimum 3 ft. length above filter pack):	Vented?: Y N						
Material Bentonite							
D. GROUNDWATER MEASUREMENT (+ 0.01 foot	below top of inner well casing)						
Water level	Stabilization time						
Well development method							
Average depth of frostline							

Attachments: Driller's log. Pipe schedules and grouting schedules. 8 ½ inch x 11 inch map showing locations of all monitoring wells and piezometers.

Please mall completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9^m St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

06/2011 cmz

ELEVATIONS: 2 0.01 FT. MSL DEPTHS: 2 0.1 FT. FROM GROUND SERFACE

SPACE TO ATTACH ENTIRE SOIL BORING LOG (SHOW SCREENED INTERVAL AND FILTER PACK INTERVAL).

OCRWD OB Well #4

0-2. Topsoil 2-7' sondy Clay. Yellow 7-25', Sand 25-26 Clay

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

06/2011 cmz

DNR Form 542-1277

Appendix B – Monthly Water Level Measurements in On-Site Observation Wells

Nov-15	Dec-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16 Jul-16	Aug-16	Sep-16	Oct-16	Nov-16
3.10	1.88					0.55	2.05	3.19	2.35	0.87	2.55
9.85	7.30	7.14	7.20	6.97	7.66	6.66	8.45	10.03	9.02	8.01	8.81
8.74	6.45	6.52	6.40	6.32	6.40	5.44	7.27	8.67	7.69	6.81	7.57
12.73	11.00	11.31	8.27	11.24	11.21	10.23	12.14	13.58	12.09	11.25	11.98
9.77	8.09	8.24	11.44	8.14	8.01	7.05	8.86	12.20	9.05	8.27	8.91
3.10	1.88					0.55	2.05	3.19	2.35	0.87	2.55
								10.45			
								15.20	14.45	13.58	13.34
	Nov-15 3.10 9.85 8.74 12.73 9.77 3.10	Nov-15 Dec-15 3.10 1.88 9.85 7.30 8.74 6.45 12.73 11.00 9.77 8.09 3.10 1.88	Nov-15 Dec-15 Jan-16 3.10 1.88 9.85 7.30 7.14 8.74 6.45 6.52 12.73 11.00 11.31 9.77 8.09 8.24 3.10 1.88	Nov-15 Dec-15 Jan-16 Feb-16 3.10 1.88 9.85 7.30 7.14 7.20 8.74 6.45 6.52 6.40 12.73 11.00 11.31 8.27 9.77 8.09 8.24 11.44 3.10 1.88	Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 3.10 1.88	Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 3.10 1.88	Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 May-16 3.10 1.88 0.55	Nov-15Dec-15Jan-16Feb-16Mar-16Apr-16May-16Jun-16Jul-163.101.880.552.059.857.307.147.206.977.666.668.458.746.456.526.406.326.405.447.2712.7311.0011.318.2711.2411.2110.2312.149.778.098.2411.448.148.017.058.863.101.880.552.05	Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 3.10 1.88 0.55 2.05 3.19 9.85 7.30 7.14 7.20 6.97 7.66 6.66 8.45 10.03 8.74 6.45 6.52 6.40 6.32 6.40 5.44 7.27 8.67 12.73 11.00 11.31 8.27 11.24 11.21 10.23 12.14 13.58 9.77 8.09 8.24 11.44 8.14 8.01 7.05 8.86 12.20 3.10 1.88 0.55 2.05 3.19 10.45 1.88 0.55 2.05 3.19	Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 Sep-16 3.10 1.88 0.55 2.05 3.19 2.35 9.85 7.30 7.14 7.20 6.97 7.66 6.66 8.45 10.03 9.02 8.74 6.45 6.52 6.40 6.32 6.40 5.44 7.27 8.67 7.69 12.73 11.00 11.31 8.27 11.24 11.21 10.23 12.14 13.58 12.09 9.77 8.09 8.24 11.44 8.01 7.05 8.86 12.20 9.05 3.10 1.88 0.55 2.05 3.19 2.35 10.45 7.05 8.86 12.20 9.05 3.10 1.88 0.55 2.05 3.19 2.35 10.45	Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 Sep-16 Oct-16 3.10 1.88 0.55 2.05 3.19 2.35 0.87 9.85 7.30 7.14 7.20 6.97 7.66 6.66 8.45 10.03 9.02 8.01 8.74 6.45 6.52 6.40 6.32 6.40 5.44 7.27 8.67 7.69 6.81 12.73 11.00 11.31 8.27 11.24 11.21 10.23 12.14 13.58 12.09 11.25 9.77 8.09 8.24 11.44 8.14 8.01 7.05 8.86 12.20 9.05 8.27 3.10 1.88 0.55 2.05 3.19 2.35 0.87 10.45 0.55 2.05 3.19 2.35 0.87 10.45

*Depth from top of metal casing

**SW: Surface water to top of metal casing

Water Table Elevations* (ft)												
Well Name	Nov-15	Dec-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16 Jun-16	Jul-16	Aug-16	Sep-16	Oct-16	Nov-16
PZ-3	1428.23	1429.45	1431.33	1431.33	1431.33	1431.33	1430.78	1429.28	1428.14	1428.98	1430.46	1428.78
OB-1	1428.00	1430.55	1430.71	1430.65	1430.88	1430.19	1431.19	1429.40	1421.30	1422.31	1423.32	1422.52
OB-2	1428.10	1430.39	1430.32	1430.44	1430.52	1430.44	1431.40	1429.57	1422.66	1423.64	1424.52	1423.76
OB-3	1428.16	1429.89	1429.58	1432.62	1429.65	1429.68	1430.66	1428.75	1417.75	1419.24	1420.08	1419.35
OB-4	1427.66	1429.34	1429.19	1425.99	1429.29	1429.42	1430.38	1428.57	1419.13	1422.28	1423.06	1422.42
SW-2 (Downstream Surface) at PZ-3	1428.23	1429.45					1430.78	1429.28	1428.14	1428.98	1430.46	1428.78
H1 OB Well									1420.88			
H2 OB Well									1429.90	1430.65	1431.52	1431.76
*Based on 2016 Survey												

Based on 2016 Survey

Appendix C – Chloride Sampling Results

	Chloride Concentration (mg/L)									
	Nov-15	Dec-15	Jan-16	Feb-16	Mar-16	Apr-16	Jun-16	Jul-16	Aug-16	Sep-16
H-1	NS	22	NS	NS	NS	NS	NS	30	NS	NS
H-2	NS	30	NS	NS	NS	NS	NS	40	NS	NS
H-3	NS	16	24	NS	NS	NS	NS	30	25	25
H-4	NS	25	24	NS	NS	NS	NS	35	30	25
OB-1	NS	14	17	NS	NS	NS	NS	20	20	25
OB-2	NS	15	20	NS	NS	NS	NS	35	20	30
OB-3	NS	22	25	NS	NS	NS	NS	30	25	25
OB-4	NS	18	23	NS	NS	NS	NS	25	30	30
PZ-1	NS	32	NS							
PZ-2	NS	32	NS							
PZ-3	NS	35	NS	NS	NS	NS	NS	40	35	30
SW2	NS	34	39	NS	NS	NS	NS	40	35	35

NS=No Sample, insufficient sample volume or frozen

Appendix D – Aquifer Pump Tests

		OWA		Pumping Test - Wa	ater Level Data	Page 1 of 2	
				Project: OCRW			
	G	IEULUG	ICAL	Number:			
	S	URVEY		Client:			
Locatio	on: May City	P	umping Test: Well 3	1	Pumping Well: Well 3		
Test C	onducted by:	Te	est Date: 1/5/2016		Discharge Rate: 400 [U.S. gal	/min]	
Observ	vation Well [.] OB 1	St	atic Water Level [ff]	· 7 29	Radial Distance to PW [ft]: 200	,)	
0.000	Time	Water Level	Drawdown		haddin biotanoo to F H [ii]. 200		
1	[min]	[ft]	[ft]	_			
2	15	7.209	0.00	_			
3	30	7.967	0.678				
4	45	7.988	0.699				
5	60	7.999	0.71				
6	75	7.993	0.704				
7	90	7.993	0.704	_			
8	105	7.995	0.706	_			
9	120	7.992	0.705	_			
11	150	7.998	0.709	_			
12	165	7.997	0.708	-			
13	180	7.993	0.704	-			
14	195	7.997	0.708				
15	210	7.994	0.705				
16	225	8.00	0.711	_			
1/	240	7.996	0.707	_			
10	255	7.990	0.707	-			
20	285	7.998	0.707	_			
21	300	7.998	0.709				
22	315	8.00	0.711				
23	330	8.006	0.717				
24	345	8.00	0.711	_			
25	360	8.002	0.713	_			
20	300	0.000	0.717	_			
28	405	8.005	0.715	-			
29	420	8.006	0.717				
30	435	8.012	0.723				
31	450	8.016	0.727				
32	465	8.013	0.724	_			
33	480	8.012	0.723	_			
35	510	8.01	0.72				
36	525	8.011	0.722	\neg			
37	540	8.008	0.719				
38	555	8.011	0.722				
39	570	8.01	0.721	_			
40	585	8.01	0.721	_			
41	615	8.015	0.726				
43	630	8 014	0.725	\dashv			
44	645	8.013	0.724	\neg			
45	660	8.011	0.722				
46	675	8.015	0.726				
47	690	8.013	0.724	_			
48	705	8.012	0.723	_			
49	720	8.014	0.725	_			
50	750	8.013	0.724				
52	765	8.013	0.724	-			
53	780	8.015	0.726				

Frojet: OCRW Image: Construction Projet: OCRW Image: Construction Image: Construction Image: Construction Image: Construction <			OWA		Pumping Test - Water Level Data	Page 2 of 2
Survey Number: Client 1 84 795 55 810 64 795 56 825 68 8014 0.724 6 56 825 68 8014 0.725 6 69 870 61 500 62 915 63 930 64 945 75 8.017 76 8.017 77 105 80 8.022 0.733 71 105 8022 0.733 75 1110 8016 0.729 75 1110 8016 0.729 77 1405 8012 0.733 75 1110 8016 0.729 76 1125 80118 0.73					Project: OCRW	
Burkey Client: 4 705 10 14 1725 45 705 8013 0.724 14 56 825 8.013 0.724 14 56 825 8.014 0.725 16 56 855 8.014 0.725 16 61 900 8.014 0.725 16 62 915 8.016 0.727 16 63 930 8.017 0.728 16 64 945 8.017 0.728 16 66 975 8.017 0.728 17 67 990 8.018 0.729 173 70 1005 8.022 0.733 17 71 1005 8.022 0.733 17 72 1005 8.022 0.733 17 73 1069 8.022 0.733 17 76 1135 8.02 0.		G	IEULUG	ICAL	Number:	
Trac Water Level Drawdown 64 795 8.014 0.725 55 810 8.013 0.724 56 825 8.013 0.724 57 840 8.016 0.727 58 855 8.012 0.725 60 885 8.014 0.725 61 900 8.016 0.727 62 915 8.016 0.728 63 930 8.017 0.728 64 945 8.014 0.728 66 975 8.017 0.728 67 990 8.020 0.733 70 1005 8.022 0.733 71 1069 8.022 0.734 72 1069 8.022 0.734 71 1059 8.022 0.734 72 1069 8.022 0.734 73 110 8.077 0.726 76		S	URVEY		Client:	
64 705 8014 6725 55 810 8013 0.724 56 825 8013 0.724 57 840 8016 0.727 58 855 8012 0.723 60 865 8014 0.725 61 900 8015 0.726 62 915 8016 0.727 63 930 8017 0.728 64 945 8014 0.725 63 930 8017 0.728 64 945 8014 0.727 68 1005 8022 0.731 64 945 8014 0.728 66 975 8017 0.728 67 990 8018 0.729 68 1005 8.022 0.733 71 11020 8.025 0.734 75 1110 6.016 0.729 76 1		Time [min]	Water Level [ft]	Drawdown [ft]		
55 810 8013 0.724 57 840 8016 0.727 58 855 8012 0.723 59 870 8014 0.725 61 900 8015 0.726 61 900 8015 0.726 63 930 8017 0.728 64 945 8014 0.725 65 960 8017 0.728 66 975 8017 0.728 67 990 8018 0.729 68 1005 8.622 0.733 70 1020 8.62 0.734 73 1005 8.022 0.733 71 1055 8.022 0.734 73 1006 8.022 0.734 74 1005 8.019 0.73 75 1110 8.016 0.729 76 1125 8.017 0.732 80	54	795	8.014	0.725		
56 825 8.013 0.724 57 840 8.016 0.727 58 855 8.012 0.723 60 885 8.014 0.725 61 900 8.015 0.728 62 915 8.016 0.727 63 930 8.017 0.728 64 945 8.014 0.725 65 960 8.017 0.728 66 975 8.017 0.728 67 990 8.02 0.731 70 1020 8.02 0.731 71 1055 8.022 0.733 74 1065 8.023 0.74 75 1100 8.016 0.729 76 1125 8.016 0.729 77 1140 8.016 0.729 78 1155 8.02 0.733 74 1085 8.021 0.73 76 1125 8.016 0.729 78 1155 8.02 0.73 74 1040 8.019 0.73 75 1100 8.021 0.73 78 1150 8.022	55	810	8.013	0.724		
36 845 8012 0.723 89 870 0.014 0.725 80 885 0.014 0.725 60 900 0.015 0.727 61 900 0.015 0.727 62 915 0.016 0.727 64 945 0.017 0.728 66 990 0.017 0.728 66 990 0.016 0.727 66 990 0.016 0.728 67 990 0.016 0.728 68 1005 0.022 0.733 70 1005 0.022 0.733 71 1050 0.019 0.727 77 1105 0.025 0.736 78 110 0.016 0.727 77 1105 0.025 0.734 78 1125 0.016 0.727 77 1125 0.016 0.727 78<	56	825	8.013	0.724	_	
S8 870 8014 9725 61 885 8014 9725 62 915 8016 0.727 63 830 8017 0.725 64 845 8017 0.728 64 845 8017 0.728 66 975 8017 0.728 66 975 8017 0.728 67 990 8016 0.729 78 1005 8.022 0.731 70 1035 8.022 0.733 71 1095 8.023 0.734 73 1096 8.025 0.736 74 1095 8.02 0.731 76 1125 8.016 0.729 76 1126 8.019 0.73 80 1185 8.021 0.732 81 1200 8.022 0.733 84 1245 8.022 0.733 85	58	855	8.010	0.727	-	
00 885 8.014 0.725 61 900 8.015 0.726 63 930 8.017 0.726 64 945 8.014 0.725 65 960 8.017 0.726 66 8.075 8.016 0.727 67 890 8.017 0.728 67 890 8.017 0.728 68 1005 8.022 0.733 69 1020 8.02 0.734 71 1050 8.019 0.73 72 1065 8.023 0.734 73 1080 8.022 0.733 74 1095 8.016 0.727 77 1140 8.018 0.729 75 1110 8.016 0.727 77 1140 8.019 0.73 80 1165 8.021 0.732 81 1200 8.026 0.733 <td< th=""><th>59</th><th>870</th><th>8.014</th><th>0.725</th><th>-</th><th></th></td<>	59	870	8.014	0.725	-	
61 900 8.015 0.727 63 930 8.017 0.727 63 930 8.017 0.728 64 945 8.014 0.725 65 960 8.017 0.728 67 990 8.018 0.729 68 1005 8.022 0.733 69 1005 8.022 0.733 70 1005 8.022 0.733 71 1050 8.019 0.73 73 1080 8.022 0.733 74 1096 8.022 0.733 75 1110 8.016 0.729 75 1125 8.016 0.729 76 1125 8.016 0.729 76 1125 8.016 0.729 76 1140 8.016 0.729 76 1125 8.016 0.729 79 1170 8.017 0.738 <	60	885	8.014	0.725		
62 915 6.016 0.727 64 945 8.014 0.728 66 975 8.017 0.728 66 975 8.017 0.729 68 1005 8.022 0.733 68 1005 8.022 0.731 70 1035 8.022 0.733 71 1050 8.022 0.733 72 1065 8.023 0.734 73 1060 8.022 0.733 74 1095 8.016 0.727 77 1140 8.016 0.727 77 1140 8.016 0.727 77 1140 8.016 0.729 78 1155 8.02 0.731 79 170 8.017 0.732 80 1125 8.019 0.73 81 1200 8.026 0.733 82 1245 8.022 0.733 <	61	900	8.015	0.726		
64 541 0.725 65 960 8.017 0.725 67 990 8.016 0.729 67 990 8.016 0.729 67 990 8.016 0.729 68 1005 8.022 0.733 70 1035 8.022 0.733 71 1050 8.002 0.734 73 1065 8.022 0.736 75 1110 8.016 0.729 76 1125 8.016 0.729 76 1125 8.016 0.729 76 1125 8.019 0.73 78 1150 8.02 0.731 79 1170 8.017 0.728 80 1185 8.02 0.731 79 1200 8.026 0.737 82 1220 8.026 0.732 86 1280 8.022 0.734 87 1	62	915	8.016	0.727		
65 660 6017 0.738 66 975 8.017 0.728 67 990 8.018 0.729 68 1005 8.022 0.731 70 1035 8.022 0.731 70 1035 8.022 0.733 71 1050 8.022 0.733 72 1065 8.023 0.734 73 1080 8.022 0.733 74 1095 8.025 0.736 75 1110 8.016 0.729 76 1125 8.016 0.729 78 1155 8.02 0.731 79 170 8.017 0.728 80 1185 8.02 0.732 78 1195 8.02 0.732 81 1200 8.019 0.73 82 1245 8.026 0.733 85 1260 8.025 0.736 <td< th=""><th>64</th><th>930</th><th>8.017</th><th>0.728</th><th>_</th><th></th></td<>	64	930	8.017	0.728	_	
66 975 8.017 0.728 67 980 6.018 0.729 68 1005 8.022 0.731 70 1020 8.022 0.733 71 1050 8.019 0.733 72 1005 8.022 0.734 73 1080 8.022 0.734 73 1080 8.022 0.734 74 1095 8.025 0.738 76 1115 8.016 0.729 76 1125 8.016 0.727 77 1140 8.018 0.729 78 1155 8.02 0.731 79 1170 8.017 0.728 80 1185 8.021 0.733 82 1215 8.019 0.73 82 1220 8.026 0.737 84 1245 8.022 0.734 87 1280 8.025 0.736	65	960	8.017	0.728	-	
67 990 8.018 0.739 68 1005 8.022 0.733 70 1035 8.022 0.733 71 1060 8.022 0.733 72 1065 8.022 0.733 74 1080 8.022 0.733 74 1085 8.022 0.733 74 1086 8.022 0.733 74 1085 8.025 0.734 75 1110 8.018 0.729 76 1125 8.016 0.727 77 1140 8.018 0.729 76 1155 8.02 0.731 79 1170 8.017 0.728 80 1185 8.02 0.731 79 1170 8.019 0.73 81 1220 8.026 0.737 84 1245 8.022 0.734 85 1280 8.025 0.736	66	975	8.017	0.728		
88 1005 8.022 0.733 70 1035 8.022 0.731 71 1086 8.019 0.73 72 1085 8.022 0.733 71 1080 8.022 0.734 73 1080 8.022 0.734 73 1080 8.022 0.733 74 1095 8.025 0.738 75 1110 8.018 0.729 76 1125 8.016 0.727 77 1140 8.018 0.729 78 1155 8.02 0.731 79 1170 8.017 0.728 80 1185 8.021 0.733 82 1200 8.019 0.73 83 1230 8.028 0.737 84 1245 8.022 0.734 87 1280 8.025 0.736	67	990	8.018	0.729		
89 1020 8.022 0.731 70 1055 8.022 0.733 71 1056 8.033 0.734 73 1066 8.022 0.733 74 1065 8.023 0.734 73 1066 8.022 0.733 74 1065 8.025 0.736 75 1110 8.018 0.729 76 1125 8.016 0.727 77 1140 8.018 0.729 78 1155 8.02 0.731 79 1170 8.017 0.732 80 1185 8.021 0.733 82 1215 8.019 0.73 83 1230 8.026 0.737 84 1245 8.022 0.736 87 1290 8.025 0.736	68	1005	8.022	0.733	_	
IV 1435 6.022 0.73 71 1055 8.023 0.734 73 1080 8.022 0.736 74 1095 8.025 0.736 75 1110 8.016 0.729 76 1125 8.016 0.729 77 1140 8.018 0.729 77 1140 8.016 0.729 77 1140 8.017 0.738 80 1185 8.02 0.731 79 1170 8.017 0.728 80 1185 8.021 0.733 82 1215 8.019 0.73 82 1215 8.019 0.73 82 1220 8.026 0.731 83 1230 8.026 0.732 86 1225 8.023 0.734 87 1280 8.025 0.736	69	1020	8.02	0.731		
1 1080 8.023 0.734 73 1080 8.022 0.733 74 1095 8.025 0.736 75 1110 8.018 0.729 76 1125 8.016 0.727 77 1140 8.018 0.729 78 1155 8.02 0.731 79 1170 8.017 0.732 80 1185 8.021 0.732 81 1200 8.019 0.73 82 1215 8.019 0.73 83 1230 8.026 0.737 84 1245 8.022 0.734 87 1280 8.025 0.736	70	1035	8.022	0.733	_	
73 1080 8.022 0.733 74 1095 8.025 0.736 75 1110 8.018 0.729 76 1125 8.016 0.727 77 1140 8.018 0.729 76 1125 8.016 0.727 77 1140 8.018 0.729 78 1155 8.02 0.731 80 1185 8.021 0.732 81 1200 8.019 0.73 82 12315 8.019 0.73 83 1230 8.026 0.737 84 1245 0.022 0.733 85 1260 8.021 0.732 86 1275 8.023 0.734 87 1290 8.025 0.736	72	1065	8.023	0.734	-	
74 1096 8.025 0.736 75 1110 8.018 0.729 76 1125 8.016 0.727 77 1140 8.018 0.729 78 1155 8.02 0.731 79 1170 8.017 0.728 80 1185 8.02 0.731 81 1200 8.019 0.73 82 1215 8.019 0.73 83 1230 8.026 0.733 84 1245 0.022 0.734 85 1260 8.021 0.732 85 1260 8.021 0.732 85 1260 8.023 0.734 87 1290 8.025 0.736	73	1080	8.022	0.733	-	
75 1110 8.018 0.729 76 1125 8.016 0.727 77 1155 8.02 0.731 79 1170 8.017 0.732 80 1185 8.021 0.732 81 1200 8.019 0.73 82 1215 8.019 0.73 83 1230 8.022 0.733 84 1245 8.022 0.733 84 1245 8.022 0.733 84 1245 8.022 0.733 86 1275 8.023 0.734 87 1290 8.025 0.736	74	1095	8.025	0.736		
76 1125 8.016 0.727 77 1155 8.02 0.731 78 1155 8.02 0.731 79 1170 8.017 0.728 80 1185 8.021 0.732 81 1200 8.019 0.73 82 1215 8.019 0.73 83 1230 8.026 0.737 84 1245 8.022 0.733 85 1260 8.021 0.732 86 1275 8.023 0.734 87 1290 8.025 0.736	75	1110	8.018	0.729		
77 1140 8.018 0.729 78 1155 8.02 0.731 79 1170 8.017 0.728 80 1185 8.021 0.73 81 1200 8.019 0.73 82 1215 8.019 0.73 83 1230 8.026 0.737 84 1245 8.022 0.733 85 1280 8.021 0.732 86 1275 8.023 0.734 87 1280 8.025 0.736	76	1125	8.016	0.727	_	
70 1133 0.02 0.131 79 1170 8.017 0.728 80 1185 8.021 0.73 81 1200 8.019 0.73 82 1215 8.019 0.73 83 1230 8.026 0.737 84 1245 8.022 0.733 84 1245 8.022 0.733 86 1275 8.023 0.734 87 1290 8.025 0.736	70	1140	8.018	0.729	_	
80 1185 8.021 0.732 81 1200 8.019 0.73 82 1215 8.019 0.73 83 1230 8.026 0.737 84 1245 8.022 0.733 85 1260 8.021 0.732 86 1275 8.023 0.734 87 1290 8.025 0.736	70	1155	8.02	0.731	_	
81 1200 8.019 0.73 82 1215 8.019 0.73 83 1230 8.026 0.737 84 1245 8.022 0.733 85 1260 8.021 0.732 86 1275 8.023 0.734 87 1290 8.025 0.736	80	1185	8.021	0.732	-	
82 1215 8.019 0.73 83 1230 8.026 0.737 84 1245 8.022 0.733 85 1260 8.021 0.732 86 1275 8.023 0.734 87 1290 8.025 0.736	81	1200	8.019	0.73		
83 1230 8.026 0.733 84 1245 8.022 0.733 85 1260 8.021 0.732 86 1275 8.023 0.734 87 1290 8.025 0.736	82	1215	8.019	0.73		
84 1245 8.022 0.732 85 1260 8.021 0.732 86 1275 8.023 0.734 87 1290 8.025 0.736	83	1230	8.026	0.737	_	
03 1205 0.021 0.734 86 1275 8.023 0.734 87 1290 8.025 0.736	84	1245	8.022	0.733	_	
87 1290 8.025 0.736	86	1275	8.023	0.734	-	
	87	1290	8.025	0.736	-	

IOWA				Pumping Test - Water Level Data Page 1 of 2			
				Project: OCRW			
		IEULUG	ICAL	Number:			
SURVEY				Client:			
Locatio	on: May City	F	Pumping Test: Well 3		Pumping Well: Well 4		
Test C	onducted by:	1	est Date: 1/5/2016		Discharge Rate: 400 [U.S. ga	ıl/min]	
Obsen	vation Well: OB 3	S	Static Water Level [ft]	: 10.93	Radial Distance to PW [ft]: 20	0	
	Time	Water Level	Drawdown				
1	[min] 0	[ft] 10.928	[ft] 0.00	-			
2	15	11.168	0.24	-			
3	30	11.189	0.261				
4	45	11.187	0.259				
5	60	11.221	0.293	_			
6	75	11.239	0.311	_			
/	90	11.25	0.322	_			
9	120	11.207	0.359	-			
10	135	11.283	0.355	-			
11	150	11.288	0.36				
12	165	11.292	0.364				
13	180	11.303	0.375				
14	195	11.307	0.379				
15	210	11.314	0.386	_			
16	225	11.319	0.391	_			
17	240	11.324	0.396	_			
10	270	11.342	0.404	-			
20	285	11.349	0.421	-			
21	300	11.35	0.422				
22	315	11.351	0.423				
23	330	11.363	0.435				
24	345	11.359	0.431				
25	360	11.368	0.44	_			
26	3/5	11.37	0.442	_			
27	405	11.377	0.449	-			
20	420	11.383	0.455	-			
30	435	11.39	0.462				
31	450	11.391	0.463				
32	465	11.398	0.47				
33	480	11.397	0.469				
34	495	11.402	0.474	_			
35	510	11.404	0.476				
30	540	11.407	0.479				
38	555	11.413	0.485	-			
39	570	11.419	0.491	-			
40	585	11.42	0.492				
41	600	11.422	0.494				
42	615	11.429	0.501				
43	630	11.427	0.499	_			
44	645	11.432	0.504				
45	675	11.435	0.507				
40	690	11 436	0.508	-			
48	705	11.437	0.509	-1			
49	720	11.445	0.517				
50	735	11.442	0.514				
51	750	11.447	0.519				
52	765	11.446	0.518	_			
53	780	11.448	0.52				

		AWC		Pumping Test - Water Level Data	Page 2 of 2
				Project: OCRW	
		EOLOG		Number:	
	S	URVEY		Client:	
	Time [min]	Water Level [ft]	Drawdown [ft]		
54	795	11.449	0.521		
55	810	11.454	0.526	_	
57	840	11.457	0.529	_	
58	855	11.459	0.531		
59	870	11.464	0.536		
60	885	11.464	0.536		
61	900	11.467	0.539	_	
62	915	11.468	0.54	_	
64	945	11.47	0.542		
65	960	11.473	0.545		
66	975	11.473	0.545		
67	990	11.473	0.545	_	
68	1005	11.473	0.545		
69	1020	11.4/9	0.551		
70	1050	11.478	0.555	-	
72	1065	11.485	0.557		
73	1080	11.483	0.555		
74	1095	11.489	0.561		
75	1110	11.485	0.557	_	
76	1125	11.489	0.561	_	
78	1155	11.409	0.563	_	
79	1170	11.496	0.568		
80	1185	11.496	0.568	_	
81	1200	11.497	0.569		
82	1215	11.499	0.571	_	
83	1230	11.497	0.569	_	
85	1245	11.504	0.576		
86	1275	11.508	0.58		
87	1290	11.504	0.576		
88	1305	11.508	0.58		
89	1320	11.51	0.582	_	
90	1335	11.512	0.584	_	
91	1365	11.510	0.589		
93	1380	11.516	0.588		
94	1395	11.522	0.594		
95	1410	11.523	0.595	_	
96	1425	11.523	0.595	_	
97	1440	11.525	0.597		

Appendix E – Electrical Resistivity Geophysical Survey Results

