SURFICIAL GEOLOGIC MAP OF THE WEST POINT 7.5' QUADRANGLE, LEE COUNTY, IOWA

Stephanie Tassier-Surine, Ryan Clark, and Phil Kerr Iowa Geological Survey, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa Open File Map: **OFM-20-5**

INTRODUCTION

The West Point Quadrangle is located in Lee County on the Southern Iowa Drift Plain landform region. The map area is dominated by loess mantled till plains in the uplands, and coarse to fine grained alluvial deposits within Sugar Creek and its tributaries. Glacial till is only exposed in drainages and steep sideslopes. Stratigraphically, the landscape is mantled with 2 to 5 m (7-15 ft) of Peoria Formation loess overlying paleosol formed in glacial till. In the eastern half of the quadrangle, the Peoria Formation overlies the Illinoian till plain. This glacier did not advance very far into Iowa and the terminal moraine extends roughly north south through the City of West Point. The Illinoian till generally has a thickness ranging from 3 to 10 m (10-33 ft), but reaches a maximum thickness of 15 m (50 ft) near the terminal moraine. The Illinoian till overlies Pre-Illinoian deposits with an intervening Yarmouth Paleosol. To the west of the moraine, loess overlies a well-developed Yarmouth-Sangamon paleosol formed in Pre-Illinoian till. The thickness of Quaternary materials varies widely across the quadrangle ranging from 0 to 18 m (0-60 ft), reaching a maximum thickness of 97 m (320 ft) in the southeastern part of the mapping area. Bedrock exposures are found along Sugar Creek and its tributaries. Mississippian and Pennsylvanian units dominate the bedrock surface. An accompanying map of the bedrock geology of the West Point Quadrangle has been published concurrently with this map.

New data collected for this mapping project included four drill cores, 36 passive seismic data points, and investigation of 12 bedrock outcrops, seven Quaternary exposures, and one abandoned quarry. Additional subsurface information was derived from the analysis of more than 200 water well records, more than 25 of which have cutting samples that were described as part of this mapping project. Additional information about the surficial mapping units and stratigraphy may be found in the Summary Map Report of the West Point Quadrangle.

LEGEND cenozoic

QUATERNARY SYSTEM

HUDSON EPISODE

Qal - Alluvium (DeForest Formation-Undifferentiated) Variable thickness of less than 1 to 5 m (3-16 ft) of very dark gray to brown, noncalcareous to calcareous, stratified silty clay loam, clay loam, loam to sandy loam alluvium and colluvium in stream valleys, on hill slopes and in closed depressions. May overlie Pre-Illinoian or Illinoian formation glacial till, Peoria Formation loess or eolian sand, or Noah Creek Formation sand and gravel. Associated with low-relief modern floodplain, closed depressions, modern drainageways or toeslope positions on the landscape. Seasonal high water table and potential for frequent flooding. The depth to bedrock may be less than 8 m (26 ft) along portions of Sugar Creek and its tributaries.

Qalb - Alluvium Shallow to Bedrock (DeForest Formation- Undifferentiated) - Variable thickness of less than 1 to 5 m (3-16 ft) of very dark gray to brown, noncalcareous to calcareous, stratified silty clay loam, clay loam, loam to sandy loam alluvium and colluvium in stream valleys, on hillslopes and in closed depressions. May overlie the Noah Creek Formation, Mississippian or Pennsylvanian bedrock. Bedrock surface is within 5 m (16 ft) of the land surface. Associated with low-relief modern floodplain, closed depressions, modern drainageways or toeslope positions on the landscape. Seasonal high water table and potential for frequent flooding.

Qallt - Low Terrace (DeForest Formation-Camp Creek and Roberts Creek members) Variable thickness of less than 1 to 5 m (3-16 ft) of very dark gray to brown, noncalcareous, stratified silty clay loam, loam, or clay loam, associated with the modern channel belts of Sugar and Devils creeks. Overlies Noah Creek Formation sand and gravel. Occupies the lowest position on the floodplain ie. modern channel belts. Seasonal high water table and frequent flooding potential.

Qali-ht - Intermediate-High Terrace (DeForest Formation-Gunder Member) Variable thickness of less than 1 to 5 m (3-16 ft) of very dark gray to brown, noncalcareous, silty clay loam to loam alluvium or colluvium. Overlies Noah Creek Formation sand and gravel along Sugar and Devils creeks. Occupies terrace and valley margin positions 1 to 2 m (3-7 ft) above the modern floodplain. Two terrace levels are present in some areas. Seasonal high water table and low to moderate flooding potential.

WISCONSIN EPISODE

Qnw(s) - Slackwater deposits overlying sand and gravel (Noah Creek Formation-silt facies) Generally less than 2 m (7 ft) of dark grayish brown to yellowish brown, massive to laminated, calcareous silt loam. Unit overlies < 5 meters of dark gray, dark grayish brown, dark brown to dark yellowish brown medium to coarse sand, gravelly sand to pebbly gravel. Low-relief landforms expressed as broad terraces; long, narrow longitudinal terraces or cuspate-shaped point terraces. Unit is benched on a gray, calcareous, massive, dense clay loam diamicton of the Glasford Formation. No flooding potential.

Qnw - Sand and Gravel (Noah Creek Formation) Generally 3 to 9 m (10-30 ft) of yellowish brown to gray, poorly to well sorted, massive to well stratified, coarse to fine feldspathic quartz sand, pebbly sand and gravel with few intervening layers of silty clay. This unit is buried by Peoria Formation silt or younger Hudson-age alluvial deposits associated with Sugar and Devils creeks and encompasses deposits that accumulated in river valleys during the Wisconsin Episode. This unit is not shown on the map or cross-section but may occur at the base of Sugar Creek.

Qhs - Outwash Sand and Pebbly Sand (Henry Formation, Sabula Mbr.) coarse to fine sand and pebbly sand mantled with up to 5 m (16 ft) of eolian sand. Comprises the Savanna Terrace complex in the Mississippi River Valley.

Opt - Loess Mantled Terrace (Peoria Formation-silt and/or sand facies) 2 to 7 m (7-23 ft) of yellowish brown to gray, massive, jointed, calcareous or noncalcareous, silt loam and intercalated fine to medium, well sorted, sand. May grade downward to poorly to moderately well sorted, moderately to well stratified, coarse to fine feldspathic quartz sand, loam, or silt loam alluvium (Late Phase High Terrace) or may overlie a Farmdale Geosol developed in Pisgah Silt which in turn overlies a well-expressed Sangamon Geosol developed in poorly to moderately well sorted, moderately to well stratified, coarse to fine sand, loam, or silt loam alluvium (Early Phase High Terrace). This unit may be benched on bedrock.

- **Ops Loess** (Peoria Formation-silt facies) Generally 2 to 5 m (7-15 ft) of yellowish to grayish brown, massive, jointed calcareous or noncalcareous silt loam to silty clay loam. May overlie a grayish brown to olive gray silty clay loam to silty clay (Pisgah Formation- eroded Farmdale Geosol) which is less than 1.5 m (5 ft) thick. The Pisgah Formation is in the same stratigraphic position as the Roxanna Silt which is mapped in Illinois. The Farmdale Geosol may be welded to an older Sangamon Geosol developed in loamy glacial till of the Wolf Creek or Alburnett formations. This mapping unit encompasses upland divides, ridgetops and convex sideslopes. Well to somewhat poorly drained landscape.
- -gla **Qps-gla Loess** (Peoria Formation-silt facies) Generally 2 to 5 m (7-15 ft) of yellowish to grayish brown, massive, jointed, calcareous or noncalcareous silt loam to silty clay loam. May overlie a grayish brown to olive gray silty clay loam to silty clay (Pisgah Formation- eroded Farmdale Geosol) which is less than 1.5 m (5 ft) thick. The Pisgah Formation is in the same stratigraphic position as the Roxanna Silt which is mapped in Illinois. The Farmdale Geosol may be welded to an older Sangamon Geosol developed in loamy glacial till of the Glasford Formation. This mapping unit encompasses upland divides, ridgetops and convex sideslopes. Well to somewhat poorly drained landscape.

ILLINOIS EPISODE

Qgla - Till (Glasford Formation) Generally 3 to 10 m (10-33 ft) of very dense, massive, fractured, loamy glacial till of the Illinoian Glasford Formation with or without a thin loess mantle (Peoria Formation- less than 2 m) and intervening clayey Farmdale/Sangamon Geosol. The maximum thickness reaches 15 m (50 ft) near the terminal moraine. Overlies the Yarmouth Paleosol formed in Pre-Illinoian till. This mapping unit encompasses narrowly dissected interfluves and side slopes, and side valley slopes. Drainage is variable from well drained to poorly drained.

PRE-ILLINOIS EPISODE

Qwa3 - Till (Wolf Creek or Alburnett formations) Generally 10 to 18 m (33-60 ft) of very dense, massive, fractured, loamy glacial till of the Wolf Creek or Alburnett formations with or without a thin loess mantle (Peoria Formation- less than 2 m) and intervening clayey Farmdale/Sangamon Geosol. This mapping unit encompasses narrowly dissected interfluves and side slopes, and side valley slopes. Drainage is variable from well drained to poorly drained.

OTHER MAPPING UNITS

Qbr - Loamy Sediments Shallow to Dolomite, Limestone, Shale and Sandstone (DeForest, Noah Creek, Peoria, Glasford, Wolf Creek, and Alburnett formations) - 1 to 2 m (3-7 ft) of yellowish brown to gray, massive to weakly stratified, well to poorly sorted loamy, sandy and silty sediments that overlie the Pennsylvanian or Mississippian bedrock surface. All areas of bedrock outcrop or shallow to bedrock soils are shown in red on the map, regardless of the bedrock mapping unit. Bedrock units are shown on the cross-section and may be identified on the bedrock map of the West Point Quadrangle, see OMF-20-4.

Qpq - Pits and Quarries - Sand and gravel pits and rock quarries. Extent mapped as shown on the county soil survey and as identified on aerial imagery.

CORRELATION CHART

*Units only shown on the Cross-Section

_____ Local road

ACKNOWLEDGMENTS

Special thanks to the landowners who allowed access to their properties: Dennis McGregor (City Administrator) and Mark Camby from the City of West Point, Jim Bair, Martin Meierotto, Ray Menke, Carol and Marvin Newton, Teresa Sallen, Mike Tweedy, and Nathan Unsworth (Executive Director) of the Lee County Conservation Board. Thanks also to Don Smith of Cessford Construction, Co. (Oldcastle Materials) for allowing us to access quarries in and around the mapping area. Drilling was provided by Matthew Streeter of the Iowa Geological Survey (IGS) with the assistance of Sophie Pierce (IGS). Uni-versity of Iowa (UI) student Karin Johnson and Cornell College student Gabi Hiatt prepared well cutting samples for stratigraphic logging. New subsurface geologic data was generated by Megan Koch and Ellie Biebesheimer, UI Department of Earth and Environmental Sciences (EES) students, by producing descriptive logs of water well cutting samples. Megan Koch and Allison Kusick (UI EES) also helped with well locations and data management. Megan and Ellie also helped with geophysical data acquisition. Thanks to Rick Langel (IGS) for managing the Iowa geologic sampling database (GeoSam). Special thanks to Kathy Woida (retired) of the Natural Resources Conservation Service and Art Bettis (UI EES - retired), for assistance with core descriptions and for numerous valuable discussions regarding the geology of southeast Iowa. Casey Kohrt and Chris Kahle of the Iowa Department of Natural Resources provid-ed GIS technical help. Administrative support was provided by Suzanne Doershuk, Melissa Eckrich, Teresa Gaffey, Carmen Langel, and Rosemary Tiwari.

GEOLOGIC CROSS-SECTION A-A'

